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ON THE MINIMAL ELEMENTS FOR THE SEQUENCE OF 
ALL POWERS IN THE LEMOINE-KATAI ALGORITHM 

JUKKA PIHKO 

ABSTRACT. It is proved, with the help of a computer, that for m = 20 the first 
m minimal elements for the sequence of all powers in an integer-representing 
algorithm are given by Yi = i, i = 1, 2, 3, Y,+i = (y2 + 6yi + 1)/4, i= 
3, m - 1. This extends an earlier result of the author (for m = 10) . 

1. INTRODUCTION 

Let 1 = a, < a2 < ... be an infinite strictly increasing sequence of positive 
integers. Let n be a positive integer. We write 

(1) n =a(,)+a(2)+- +a(s) 

where a(l) is the greatest element of the sequence < n, a(2) is the greatest 
element < n - a(l), and, generally, a(i) is the greatest element < n - a(l) - 
a(2) -. - a(i-l). This algorithm for additive representation of positive integers 
was introduced in 1969 by Katai [2, 3, 4]. Lemoine had earlier considered the 
special cases ai = ik, k > 2 [5, 6], and ai = i(i + 1)/2 [7]. (See [10, 11, 12, 
and 13] for further information and note also [1].) The above algorithm is, in 
turn, a special case of a more general algorithm introduced by Nathanson [9] in 
1975. 

The following basic definitions and results are taken from [8 and 10]. We 
denote here the set of positive integers by N. 

Let 1 = a, < a2 < ... be an infinite strictly increasing sequence of positive 
integers with the first element equal to 1. We call it an A-sequence and denote 
by A the sequence itself or sometimes the set consisting of the elements of 
the sequence. We denote the number s of terms in (1) by h(n). If the set 
{n E N I h(n) = m} is nonempty for some m E N, we say that Ym exists and 
define Ym to be the smallest element of this set. 

Theorem 1 (Lord). Let Yk be given (k E N). Then Yk+j exists if and only if 
there exists a number n E N such that a,+, - a, - 1 > Yk. Furthermore, if 
Yk+1 exists, then Yk+1 = Yk + am, where m is the smallest number in the set 
{n EN I a,+, -a,- >_Yk}. 

Proof. See [8; 10, p. 9]. El 
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If Ym exists for every m E N, we say that the Y-sequence exists and we 
denote the sequence 1 = Yi < Y2 < ... by Y. The elements Ym are also called 
minimal elements. 

Corollary 1. The Y-sequence exists if and only if the set {a,+, - a n E N} is 
not bounded. 

If the A-sequence is well behaved, then, using Theorem 1, it may be possible 
to determine all the elements of the Y-sequence (see [10] for many examples). 
In particular, we have the following result (see [10, p. 20]): 

Theorem 2 (Lemoine). Let ai = i2, i = 1, 2, ... . The Y-sequence is given by 

(2) YI = 1, Y2 = 2, y3 = 3, y+j= y+6y+ i>3. 
4 

Consider now the A-sequence of all powers, that is, the sequence formed from 
all integers 5k, where s, k E N and k > 2. This sequence is not very well be- 
haved, starting as A: 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 
125, 128, 144, 169, 196,.... Using Corollary 1, we proved in [10, p. 49] 
that the Y-sequence exists for the A-sequence of all powers. Moreover, we 
established (with the help of a pocket calculator and somewhat to our surprise) 
the following result: 

Theorem 3. Let m = 10. The first m elements of the Y-sequence for the A- 
sequence of all powers are given by 

2 y2 + 6yi + 1 

Using the computer, we have now extended Theorem 3 to 

Theorem 4. Theorem 3 is true with m = 20. 

Our purpose in this paper is to show how Theorem 4 can be established. In 
?2 we explain the method, and in ?3 we illustrate the method by reestablishing 
Theorem 3. (No numerical details were given in [10].) Finally, in ?4, we indicate 
what kind of calculations are used in the extension of Theorem 3 to Theorem 
4. We remark at this point that Y20 is a number with 26681 digits. 

2. THE METHOD 

Let A : 1 = al < a2 < ... be the A-sequence of all powers and let Y: 
=Y1 <Y2 < be its Y-sequence. Let Y*: 1 = y < y* <.. be the 

Y-sequence for the A-sequence of squares (see Theorem 2). We use Theorem 
1 in the following 

Definition 1. Let k1, k2, ... be the sequence of positive integers defined by 

(3) Y+1=yi +ki, i= 1, 2. 

Theorem 5. We have 

k2 

Proof. This follows immediately from (3) and (2). O 

Definition 2. We let C(n) = {i E N I k,2 < ai < (kn + 1)2}. 

The following result forms the basis of our method: 
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Theorem 6. Suppose that we have, for some n E N, n > 3, y, = yn. Then 
Yn+1 = Y*+j if and only if C(n)= 0. 

Remark. The "if' part of Theorem 6 is from [10, p. 52] (note the slightly dif- 
ferent notation). The "only if' part was recently established by Ernst S. Selmer 
[15] and is published here with his kind permission. The following proof of the 
"only if' part is actually a somewhat shortened version by the present author 
of Selmer's original proof. 

Proof of Theorem 6. Let B(n) = {i E N I kn2 < ai < y*+} . We have (see [10, 
p. 51]) 

(5) Yn+1 = Yn*+l if and only if B(n) = 0. 

It follows easily from (2) and (3) that 

(6) y*+1 = (kn + 1)2-2 for n > 3. 

Therefore, B(n) c C(n) and the "if ' part follows from (5). 
To prove the "only if' part, we note that using (5) and (6), we only have to 

prove that, if n > 3, then 

(7) (kn + 1)2-1 _ A. 

But if (kn + 1)2 _ 1 E A, then (kn + 1)2- 1 = sP, where s E N and p is 
an odd prime. Now we use the fact (see [14, p. 197 and p. 206]) that if the 
Diophantine equation 

x 2= yP +1 

has a solution in natural numbers x and y, then p = 3, x = 3, and y = 2. 
It follows that kn = 2 and n = 3, which contradicts our assumption n > 3. 
Therefore, (7) holds, and the proof is completed. El 

3. PROOF OF THEOREM 3 

It is easy to see, by means of Theorem 1, that 

Yi = yj = i for i = 1, 2, 3, 

Y4=Y4 =7, y5=y =23, A6=Y6*= 167. 
We may therefore start using Theorem 6 with n = 6. Using Theorem 6, we try 
to show that between certain consecutive squares there are no elements from 
the sequence A, that is, no higher powers. Obviously, it is enough to show 
that there are no powers with exponent p for p an odd prime. This we do by 
finding an integer x E N such that 

(8) xP < kn2 and (x + 1)P > (kn + 1)2. 

With n fixed, we use the following notation: 

(9) ~~~a = kn2 _ xP, b = (x+ I)p _ (kn + 1)2. 

For example, with n = 6, we have, from (4), k6 = 84, and if p = 3, then 
x = 19 satisfies (8), so that a = 842 _ 193 = 197 and b = 203 - 852 = 775. 

To prove Theorem 3, we show that C(n) = 0 for n = 6, 7, 8, and 9. This 
will be seen from Tables 1, 2, 3, and 4, respectively. There are three things to 
note in these tables: 
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10. If the same x corresponds to two different primes Pi and P2, P1 < P2, 
then the same x also corresponds to any prime p, P1 < P < P2. Therefore, 
any such prime may be suppressed from the table. For example, in Table 2, 
p = 19 is suppressed. 

20. If, for some prime p, we have x = 1, then we can clearly stop. 
30. The only interesting thing about the numbers a and b from (9) in this 

connection is that they are positive. Therefore (except for Table 1), only an 
approximation is given. (However, their exact values were calculated by the 
computer to check that they are indeed positive.) 

TABLE 1. Proving that C(6) = 0 

p x a b 
3 19 197 775 
5 5 3931 551 
7 3 4869 9159 
11 2 5008 169922 
13 1 7055 967 

TABLE 2. Proving that C(7) 0 

p x a b 
3 235 68669 90487 
5 26 1.16517. 106 1.29514 106 
7 10 3.04654 106 6.43340 106 
11 4 8.85224 . 106 3.57744 . 107 
13 3 1.14522 107 5.40551 .107 
17 2 1.29155 107 1.16086. 108 
23 2 4.65794 106 9.41301 .1010 
29 1 1.30465 107 5.23817 108 

TABLE 3. Proving that C(8) = 0 

p x a b 
3 34925 2.49546. 108 3.39677* 109 
5 531 3.84650 1011 1.43472 1010 
7 88 1.73266 .1012 1.63111 . 1012 
11 17 8.32832 1012 2.16682 1013 
13 11 8.07750 1012 6.43930 1013 
17 6 2.56736 1013 1.90030 1014 
19 5 2.35267 1013 5.66760 1014 
23 3 4.25061 f1013 2.77685. 1013 
29 2 4.25997. 1013 2.60301 . 1013 
43 2 3.38041 f1013 3.28257. 1020 
47 1 4.26002. 1013 9.81373 1013 
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TABLE 4. Proving that C(9) = 0 

p x a b 
3 768401051 1.06232 1018 7.08959 1017 
5 214463 2.05557. 1021 8.52194. 1021 
7 6428 2.43108. 1023 2.50925 1023 
11 265 1.10521. 1024 1.80400 1025 
13 112 1.73455 1025 3.61063. 1025 
17 36 1.67183. 1026 2.79309 1024 
19 25 8.98970 1025 3.12772. 1026 
23 14 2.24109. 1026 6.68579 1026 
29 8 2.98952. 1026 4.25643. 1027 
31 7 2.95919 1026 9.44983. 1027 
37 5 3.80935 1026 6.14329. 1028 
41 4 4.48859 1026 4.50210 1028 
43 4 3.76324 1026 1.13641. 1030 
47 3 4.53668. 1026 1.93533. 1028 
53 3 4.34312 1026 8.11292 1031 
59 2 4.53695 1026 1.36767 1028 
83 2 4.44023. 1026 3.99084 1039 
89 1 4.53695. 1026 1.65275. 1026 

4. ON THE PROOF OF THEOREM 4 

The proof of Theorem 4, that is, the proof that C(n) = 0 for n = 10,..., 19, 
is too long to be published in its entirety. To give some idea of the nature 
of calculations, we show, in Table 5, the beginning and the end of the case 
C(19) = 0. To save space, only approximations for the numbers x are given 
in the first part of Table 5. Those who look at Table 5 might like to know that 
the last prime p there, 88643, is the 8585th prime number. 

TABLE 5. Beginning and end of the proof that C(19) = 0 

p x a b 
3 3.46421. 108893 3.42990. 1017787 1.70322. 1017786 
5 1.32973. 105336 6.91975. 1021344 8.71246. 1021344 
7 3.28831. 103811 8.66010 1022869 1.89784. 1022868 
11 3.24191 . 102425 8.14941 . 1024255 5.95661 .1024255 

13 2.26617. 102052 1.57522. 1024629 8.09640* 1024628 

44351 3 4.15732. 1026680 9.17646. 1026701 
55903 3 4.15732. 1026680 9.11371. 1033656 

55921 2 4.15732. 1026680 8.36502 1026680 

88609 2 4.15731 . 1026680 1.72687. 1042277 
88643 1 4.15732. 1026680 1.59145. 1026684 
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To eliminate errors, we used different languages (MACSYMA, LISP, Reduce, 
and Mathematica, all capable of handling integers exactly) as well as different 
computers (Sun 4/390 and VAX 8650 of the Centre for Scientific Computing 
and DECstation 3100 of the Physics Computation Unit). Only Mathematica, 
however, was used in the last two steps (C(18) = 0 and C(19) = 0). 

Remark. Theorem 4 leaves open the question whether yn = yn for all n or 
whether there exists an integer n such that Yn & Yn*. We consider the latter 
case to be more likely. 
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